Potencias

Definición

La potencia \(a^n\),(\(n>1\)), es el producto de \(n\) factores iguales a la base \(a\), es decir,

\(\boxed{a^n=a\cdot a\cdot a\cdot...}\) (\(n\) veces)

Propiedades

  • \(a^0=1\)
    Ejemplo: \(5^0=6^0=1^0=1\)
  • \(a^1=a\)
    Ejemplo: \(5^1=5\)
  • \(a^n=\dfrac{1}{a^{-n}}\)
    Ejemplo: \(5^3=\dfrac{1}{5^{-3}}\)

Operaciones con potencias

El orden para operar es: primero la multiplicación y la división y por último la suma y la resta

Con la misma base y distinto exponente

  • \(a^m\cdot a^n=a^{m+n}\)
    Ejemplo: \(3^2\cdot 3^4=3^6\)
  • \(\dfrac{a^m}{a^n}=a^{m-n}\)
    Ejemplo: \(3^5:3^2=3^3\)
  • \((a^m)^n=a^{m\cdot n}\)
    Ejemplo: \((3^2)^3=3^6\)
  • \(a^{\frac mn}=\sqrt[n]{a^m}\)
    Ejemplo: \(\sqrt[5]{2^3}=2^{\frac 35}\)

 

Con distinta base y mismo exponente

  • \(a^m\cdot b^m=(a\cdot b)^m\)
    Ejemplo: \(3^2\cdot 5^2=15^2\)
  • \(a^m:b^m=(\dfrac ab)^m\)
    Ejemplo: \(6^5:2^5=3^5\)

Ver ejercicios de potencias

Ver ejercicios de polinomios